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Duality in Two Capacitively Coupled Layered Arrays
of Ultrasmall Josephson Junctions

Jorge V. Jose1

Received June 12, 1998

We consider the problem of two capacitively coupled Josephson junction arrays
made of ultrasmall junctions. Each one of the arrays can be in the semiclassical
or quantum regimes, depending on its physical parameter values. The former
case is dominated by a Cooper-pair superfluid, while the quantum case is
dominated by dynamic vortices leading to an insulating behavior. We first con-
sider the limit when both arrays are in the semiclassical limit, and next the case
when one array is quantum and the other semiclassical. We present WKB and
mean-field theory results for the critical temperature of each array when both
are in the semiclassical limit. When one array is in the semiclassical regime and
the other one is in the quantum-fluctuations-dominated regime, we derive a
duality transformation between the charge and vortex-dominated arrays that
involves a gauge vector field which is proportional to the site coupling
capacitance between the arrays. The system considered here has been fabricated
and we make some predictions as to possible experimentally measurable quan-
tities that could be compared with theory.

KEY WORDS: Superconductivity; macroscopic quantum phenomena;
mesoscopic systems.

I. INTRODUCTION

The subject treated in this paper relates to interesting quantum properties
of Josephson junction arrays (JJA) made with ultrasmall junctions.
Layered Josephson junction arrays have been the source of many theoreti-
cal and experimental studies in the last few years.(1) Recent advances in
submicrometer technology have made it possible to fabricate relatively
large arrays of ultrasmall superconductor-insulating-superconductor (SIS)
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Josephson junctions.(2–5) The areas of these junctions can vary from a few
microns to submicron sizes. Under these circumstances the long range
phase coherent properties of the JJA depend crucially on the interplay
between the Josephson energy, EJy and charging energy, Ec. Detailed
experiments have been carried out, for example at Delft, that have
produced a phase diagram of temperature vs the quantum parameter
«. = EC/Ej.(2) We have calculated the a vs temperature phase diagram and
we made(6, 7) a direct successful comparisons to the experimental results.(2)

Our results were obtained using a WKB-renormalization-group approach,
plus a variational and quantum Monte Carlo (QMC) calculations.(6) An
important QMC result is that there appears to be a low temperature
QUantum fluctuation Induced Transition (QUIT) in this system.(8, 6)

For the most part the experimental systems have been two-dimen-
sional, but prototype quasi-three-dimensional samples have also been
fabricated.(9) In this paper quasi-means two layers of JJA capacitively
coupled at each lattice site. There are two dominant contributions to the
charging energy in the type of junctions fabricated;(9) one due to the addition
of a Cooper pair charge to a superconducting island given by £C j = 2e2/Cs

with Cs the self capacitance and e the electronic charge, and the charging
energy necessary to transfer a Cooper charge from one island to its nearest
neighbor, given by £Cm = 2e>2/Cm, with Cm the mutual capacitance. In the
Delft experiments, C s ~ 3 x l 0 ~ 1 7 F , and C m ~ l x l 0 ~ 1 5 F , which means
that Cm can be two orders of magnitude larger than Cs.

The phase diagram for one layered JJA has the following general
characteristics. At low temperatures, for small a there is a superconducting
phase in which the Cooper pair charges are delocalized, while for large a
the system has delocalized vortices and the array is an insulator. There is
a phase boundary that separates the superconducting to insulating regions.
Now assume that we have two layered JJA capacitively coupled at each
lattice site. This configuration is potentially quite interesting since, as men-
tioned above, each array can be in one of two extreme limits; one Cooper
charge dominated and the other vortex dominated. Each array is now
described by its quantum ratio Xi = EcJEj. (/'= 1, 2). We can then imagine
to have the two arrays in four possible configurations. When a , « 1, the
/th array is dominated by localized vortex excitations, V,, while the Copper
pair excess charge excitations, Qt, are in a superfluid or superconducting
state. In the a , » 1 regime the array has the Q,'s localized in an insulating
state while the Vt's are delocalized. We can also have the extreme cases
when both arrays are semiclassical or in the quantum regimes.

In this paper we shall consider first the case where both arrays are in
the semiclassical regime. We obtain an effective partition function that
allows to calculate the change of each array critical temperatures. This type of
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analysis was quite informative in the one-array problem. Next we move
to consider the general case where we derive a Hamiltonian that is valid
for all parameter regimes. This Hamiltonian is quite complex and difficult
to analyze in full. Instead we consider the interesting case when one of
the arrays is charge and the other vortex dominated. After a series of
transformation we arrive at an effective Hamiltonian that exhibits inter-
esting duality properties. We analyze the imaginary time dynamics of this
Hamiltonian in the case where only one vortex in one array and one charge
in the other are considered. Here we show that these two excitations inter-
act via a gauge-like interaction proportional to the interaction capacitance
between the arrays.

The outline of the paper is the following. In Section III the case where
both arrays are in the semiclassical limit since in that case we can analyze
in some detail the changes in the critical temperature of both arrays inde-
pendently via a variational Mean Field analysis. In Section IV we consider
the interesting limit when one array is semiclassical and the other quantum.
In this case we can derive an effective action for the problem that allows
a general analysis of the interaction of a vortex in one array with a charge
in the other via an interaction term that has tile form of a minimal gauge
coupling proportional to the interaction capacitance. The other extreme
case where both arrays are quantum is not considered here since that case
is harder to analyze. We conclude the paper with some conclusions in
Section V.

In this paper I present some results of work done in collaboration with
C. Rojas (related details can be found in ref. 6 and in his Ph.D. thesis'7').

II. THE MODEL

In this section we define the model that describes a quasi-three-dimen-
sional array composed of two JJA layers coupled at each site by an
ultrasmall capacitor. In our analysis we will have in mind the prototypical
samples fabricated at Delft.(9) In these samples the size for each layer were
^ = 230, and Ly = 60. The typical parameter for the intra-layer mutual
capacitance was Cmx2.3fF, and the interplane local interaction capaci-
tance was C int« 0.6/F. The model consists of two planar arrays stacked on
top of each other. The intra-array interaction between the superconducting
islands in each array contains an electrostatic and a Josephson coupling.
The two planes are only capacitively coupled. The model Hamiltonian is
given by
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where the index // = 1, 2 labels the two arrays. The operators $II, and nu,
satisfy the commutation relations [«A(r,), 0^(f2)] = — iSf^^Sft,^'. Th
functions /•"„ are the Josephson interaction terms,

Here E^ is the Josephson energy coupling constant, for the junctions in
array fi. VM(F) is the electrostatic potential felt by the charges contained in
the superconducting island located at r in array ju. This potential is
produced by all the other charges in both arrays, and it is obtained from
the discrete Poisson equation

Here the u summation is over nearest neighbors. In a uniform square lat-
tice u= { +x, +)'}• The complementary equation for n2(r) is obtained by
interchanging (1 <-• 2). In Eq. (3), C[M) is the self capacitance of a super-
conducting island in array /ii. The previous equation can be written in the
compact form,

where the capacitance supermatrix CA v is made of four blocks labeled by
Ai, v= 1,2,

The diagonal blocks of this matrix are the intra-array capacitance matrices.
We will use the following notation for them

The off-diagonal parts of the Cp „ supermatrix are given by block matrices
proportional to the identity matrix —CiMlNtN, with N the linear size of



Capacitively Coupled Ultrasmall Josephson Junctions 947

the arrays. The inverse matrix of Eq. (5), C, is obtained from solving the
equation

The explicit components of the inverse matrix are given by

For a uniform array an explicit expression for this matrix can be found
using a Fourier representation of the matrices.

Finally, using Eqs. (1), (4), and (7), we can write down the model
Hamiltonian studied in this paper as

III. SEMICLASSICAL CAPACITIVELY COUPLED ARRAYS

In this section we begin our analysis of the quasi-three dimensional
JJA model defined by Eq. (12), when the parameters in both arrays are in
the small a semiclassical regime. Here we estimate the change in the critical
temperature, Tc, for each array as a function of C im. We use a WKB semi-
classical expansion valid for small a values, as we did in the single array
problem.(8, 6) In this limit we first obtain an effective action that we then
analyze within a variational Mean Field theory (MFT) approach. In the
prototypical Delft samples, they had small ratio values for (Cjn,/Cs). To
have a consistent semiclassical expansion in C im, as follows from looking
at Eqs. (8)–(11), we need to carry out the expansion at least to second
order in C, which is equivalent to doing the expansion up to second order
in q2. After a long, but direct, calculation we obtain the effective semiclassi-
cal partition function,
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with the effective semiclassical action up to second order given by

As a check, we note that we recover the one-layer results if we keep terms
up to first order in q2. We find that the superconducting state is stable at
low temperatures, because the second-order contribution in q2 has a
negative sign compared to the first-order contribution to the effective
action. Notice that higher orders in q2 coincide with higher orders in B.
This conclusion does not, by itself, eliminate the possibility of having a
QUIT in the two layered problem.

Equation (14) does not have a simple form as in the one JJA layer
first-order expansion in q2. The third term in Eq. (14) has nonlocal inter-
actions, which makes a direct calculation of the critical temperature in
general complicated. To estimate the change in the critical temperatures as
a function of CmX, we have performed a couple of distinct MFT variational
calculations for the partition function given in Eq. (14).

For the general variational calculation first we split the effective action
into two parts

which gives the exact semiclassical expansion for the partition function

The average < >0 is defined as
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We now use the variational inequality <exp{^} > <exp{<^>} to write

The corresponding variational free energy is then

We next need to specify the functions S^K They can be any general func-
tions, but here we restrict them to be functions of only one phase variable
for each layer. These functions must be chosen so that we can carry out
some or all of the integrations in Eq. (20). We introduce variational
parameters in the trial actions that are determined by requiring that they
minimize fiFvar. We have used two different choices for S^.

A. First Variational Calculation

The first choice decouples all the phases in both arrays

with the two yM's the variational parameters.(10) The advantage of this form
for the trial action is that all the integrals can be analytically computed or
they can be expressed as simpler one-dimensional integrals. For the classi-
cal 2-D XY model it is known that this variational choice grossly over-
estimate the critical temperature.(10) This approximation, nonetheless, gives
good qualitative results for the critical temperatures for both JJA layers.
Here we are mostly interested in general trends so, for simplicity, we only
study the case when both JJA layers have the same parameter values. After
a lengthy but direct calculation, the critical temperature equation for one
of arrays is obtained from solving the equation

were we found

K1, K2 and K3 are complicated functions of the ratios (Cint/Cs) and (C/Cs).
They can be computed in general in terms of summations over Fourier
modes. Here we are only interested in a general trend of Tc as a function



We can now interpret the effect of the inter-plane capacitance as a resealing
of the single layer quantum parameter a, namely
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of Cint, and we further simplify the problem by considering the self-
capacitive limit, i.e., Cm = 0. In this case, the K functions can be fully com-
puted giving

The first conclusion we draw from this result is that, in the semiclassical
approximation, the inter-plane capacitance makes the system less quantum
mechanical. The critical temperature increases as (C int/Cs) increases up to
an asymptotic plateau. To further check this result we have also performed
quantum Monte Carlo calculations that confirmed our analytic results.

Note that here we only presented the case where both arrays are equal
and the mutual capacitance is zero. We have done so due to the simplicity
of the analytic results. It is not much harder, within this approximation,
to numerically calculate Tc for the more general cases. The general result
leads to the same qualitative conclusion; The increase in the inter-plane
capacitance raises the critical temperature for both arrays.

From Eq. (26) we can find Tc up to second order in the effective quan-
tum parameter aeff giving

where the variational result for the classical 2-D XY model is (kgT^/Ej)
= 2. It is evident that this approximation overestimated the critical tem-
perature. Surprisingly, it gives a very good estimate of the first two correc-
tion values for the one array problem.(8)

B. Second Variational Calculation

In the previous subsection we used Eq. (21) to perform the MFT
variational calculation. From the form of Eq. (20) it is clear that it is not
necessary to use a trial action that decouples all the phases in both arrays.
We now want to use a better trial action that gives better 2-D XY model
classical results. This has the advantage that the classical limit for each
array is by construction exact. The disadvantage of this choice is that we



with B1 and B2 the variational parameters needed to calculate the varia-
tional free energy in Eq. (20) from Eq. (14). We need to evaluate the
following averages

with p the inverse temperature of the classical 2-D XY model. This function
can not be calculated exactly, but it can be evaluated using a Monte Carlo
calculation or by matching a low to a high-temperature expansion for the
classical 2-D XY model.

The average in Eq. (30) is more complicated. First, if fi # v, due to the
intra-plane independence, the average can be reduced to finding two values
of goiP)- If A = v, the problem is intractable for general r, and f3. This is
exactly the problem we would encounter if we want to make a calculation
for a general full capacitance matrix. On the other hand if we choose
Cm = 0, the problem is simplified. In this case, only go(B) and the following
functions
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need to evaluate a nonlocal average over the 2-D XY model classical
Hamiltonian, for which we have to approximately evaluate an infinite lat-
tice sum. Again, we restrict the calculation to the Cm = 0 limit, although we
could do the numerical calculation for the full model.

The starting point of this scheme is to use the trial action

The average in Eq. (29) is simple, since we only need to perform the
average when fx and f2 are nearest neighbors. Here we are interested in
periodic and symmetric arrays. It is then convenient to define and evaluate
the following short range correlation function
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need to be known. These function can be calculated using a Monte Carlo
calculation for the classical 2-D XY model. Using all these functions, we
can evaluate the variational free energy Fvar(B1, B2). The parameters B1 and
B2 are found by imposing the condition that they minimize the free energy.
This condition reads

The explicit equation for Bx obtained from Eq. (35) is

A similar equation can be written down for B2. In writing this equation we
have used the following definition for the effective quantum parameter for
the arrays

We are therefore left with the following set of self-consistent equations for
the two variational parameters

The functions G, and G2 can be identified from Eq. (36). We set / ^ = /?fy

as the condition to find the critical temperature of the array /u, i.e., we iden-
tify the value of /?„, with an effective inverse temperature for the array u.
To find the critical temperature for array 1 we solve the following set of
equations

These equations are not difficult to solve. First, given a value of B we first
solve for B2 using Eq. (39). Note that this equation can be written in the
following form



The result of this calculation gives the same result as in Eq. (27) for the
first order correction in a, but now the a = 0 limit gives the correct classical
value for Tc/ksEj=l/^r. Here the general result is qualitatively the
same; an increase in the interaction capacitance Cint results in a decrease
of the effective quantum parameter.

IV. DUALITY IN TWO CAPACITIVELY COUPLED JJA

In the previous section we studied the specific changes in the individual
critical temperature of two JJA, when both were in the semiclassical
parameter regime. In this section we analytically consider the interesting
case where one array is in the semiclassical regime and the other in the
quantum one. In the semiclassical array, vortices are localized while the
Cooper pair charge fluctuations are mobile in the superfluid phase. This
happens for small a values. In the quantum JJA regime, large a the vortices
are mobile while the charges are localized. It is not possible to have both
vortices and charges simultaneously localized or mobile since this is for-
bidden by the Heisenberg uncertainty principle (which has been shown at
work in recent experiments in a small Josephson array system(11)). The
interaction between vortices and charges has a minimal coupling form,
with constant strength and it is sharply localized, i.e., a vortex and a
Cooper pair only interact if they are located at the same point in the array.
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We can show from Eq. (36) that the quantities A and B in this equation are
not functions of B2. Moreover, solving this equation using a fixed point
search method gives P2(P

(c))> that can then be introduced into Eq. (39). W
are now left with a one variable equation.

The case when both arrays have the same parameters is again easier
to solve, since the transcendental Eqs. (39) reduce to just one polynomial
equation

where /?<;> = /?</> and

We have used Eq. (26) to define aeff and found the value of g3(/?fY) using
Monte Carlo calculations to be
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By considering two arrays with one vortex dominated and the other charge
dominated we can have them both interacting via the coupling capacitance
between the arrays. A related analysis of the coupled array system was con-
sidered in ref. 15 by us and an alternative and complementary analysis was
also presented in ref. 16.

In this section we will carry out the two array analysis extending
techniques developed for the study of one array.(12) Here we shall consider
first the one-array component of the Hamiltonian given in Eq. (12) and
later its Villain approximation.(13) we briefly mention the one JJA calcula-
tional approach, since the extension to the two-array case follows from this
analysis. This is true only because the arrays are electrostatically coupled.

The Hamiltonian for one array reads

where Cffj, r2) is the one-array capacitance. The partition function for this
Hamiltonian can be written in the path integral form

Here we denote <j>^ ^(T) = </>(T, r}) ~<j>(r, r2), and write the imaginary t
summation as an integral. To integrate over the </>'s, we need to introduce
an additional set of variables. This is done by writing the Boltzmann factor
as a Fourier series using the Poisson summation representation,(13)

Here Im{X) is the modified Bessel function. The integral in Eq. (48) gives a
convenient way to extract the asymptotics for the small and large k. For
small X, the Taylor series expansion of Im(A) around x = 0 gives us the



leading expansion terms of/m(A). For large k, a steepest descent calculation
yields the leading term. In these two asymptotic limits we have

Using Eq. (47) in Eq. (46) we have new summation link variables mv{r, r)
between the nodes of the lattice. This is repeated for each of the imaginary
time planes. The subindex v is a vector that denotes the orientation of the
links so that we can write

These constraint equations can be solved in several waifs. For example, the
pair (n, m) can be expressed in terms of a three-vector J T = («, m),(l4) so
that Eq. (53) becomes
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If we use the X » 1 result in Eq. (47), we can write

After the integration over the <j>'s we get a set of constraints over the n a
m values. These constraints can be written as discrete continuity equations
that are satisfied at each node of the array,

Here we have discretized the imaginary time interval with s = flh/LT, and
the lattice derivative is Avf(f) = f(r + f>) —/(f). After the integrations over
the <̂ 's the result can be written in terms of the integer n and m variables
as



with A(r, f) another integer gauge field. To obtain the partition function
we need to perform summations over this field. The first term in the last
equation represents a discrete line integral, which is better calculated in a
Fourier representation. After substituting Eq. (55) into Eq. (52) we obtain
an expression for an effective action as functions of the n's and the A's. The
partition function is now obtained by summing over these variables, but
now without any constraint. We perform the summation over the A's again
with the help of the Poisson summation formula. After introducing a new
set of integer v variables, the summation over the A's can now be done
since the integrals left to calculate are Gaussian and the A's are
unconstrained fields. The final result is
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with the discrete gradient, dv = {Ar, A). From Eq. (54) K can be expressed
as the curl of a gauge field, i.e., X" = &"vpAvs^p, with s"vp the usual fully
antisymmetric tensor. Substituting this result into Eq. (52) we get an effec-
tive action over the gauge field A, which resolves the constraints over the
summations.

Our solution to the constraint it Eq. (53) is different from the one used
in ref. 12 where they wanted to preserve the n variables. The solution to
our constraint equation will have a particular solution plus an homoge-
neous solution. Note that Eq. (53), written in this form, resembles one of
Maxwell's equation that connect the divergence of the electric field to the
charge density. The particular solution to this equation contains the
gradient of a line integral, that can then be solved using a discrete line
integral operator. The solution can be formally written as

where we defined



Equation (57) is an effective action for two coupled imaginary time
Coulomb gases. This equation is valid for all parameter ranges. When EJ

is large, the last term in this equation is small and the time derivatives of
the charges are soft with the n's having strong fluctuations. In this limit the
v's dominate and the n's are not well defined. We will call this a vortex-
dominated regime. When EJ is small, the last term in the effective action is
large and it makes the time derivatives of the charges well defined. In this
limit the v's are not well defined and the state is charge-dominated, with
the charges described by an effective continuous Gaussian model. After
integrating the continuous variables we obtain an effective action for the
vortex integer conjugate variables.

One important aspect of the one-array derivation of Eq. (57) is that it
did not involve the charging energy part. This means that when we carry
out the two-array calculations we only need to see that its effective action
can be written down immediately from just repeating the one array calcula-
tion; we only need to add the essential extra charging energy term that
couples the two arrays. The two-array equivalent equation to Eq. (57) is
then
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where we used the definition of C given in Eq. (7).



We can neglect the P # 0 terms when £•<<?' >>> £j,2), since they are exponen-
tially small. Note that this integration only involves vortices in array 2, and
it can be done without affecting the variables in array 1. When we only
consider the P = 0 terms, there is a change in the Josephson coupling con-
stant given by E(P -> £^2)/2.(12) In this parameter limit we see that the only
modification is in the new coupling constant in Eq. (59).

We can also use the Poisson summation formula for the integration of
the charges in array 1. After the integration the action for the charges can
be written as
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where the M operator and effective current J are

We start by performing a vortex integration in array 2. This can be done
using the Poisson summation formula to write

In this section we shall consider the interesting case where one of the
arrays is in the semiclassical regime (the vortex-dominated state) and the
other is in the full quantum regime (i.e., the charge-dominated state). we
want in particular to study the interaction between vortices in one array
and charges in the other. We assume, as in experiment, that the arrays are
dominated by the mutual capacitance between nearest neighbors. We take
array 1 vortex-dominated and array 2 charge-dominated, i.e.,



Notice that the time nonlocality of these kernels comes from the second
term in Eq. (63). To gain some physical understanding of these complicated
equations we will next discuss a simplification when the nonlocal term in
Eq. (63) is small.

A. Vortex-Charge Capacitive Gauge-like Coupling

In Eq. (66) we have an effective interaction between vortices in array
1 and charges in array 2. We consider the dynamics of just one charge and
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After integrating the charges in array 1 and the vortices in array 2 we are
left with the following expression for the effective partition function

where the effective action for vortices in array 1 and charges in array 2 is
given by

The effective interaction potentials are defined by



This expression has a similar form to the typical minimal gauge coupling
in electrodynamics. Following this analogy we can define the correspond-
ing vector potential

Here we have chosen to view the vortex-charge interaction in the represen-
tation where the vortex moves under the influence of the charge gauge-like
field A. This view is equivalent to the representation where the charge
moves in the gauge-like field produced by the vortex. We have a vector
field, and we can find its corresponding effective "magnetic field"
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one vortex in each array, in a similar way as was done for one array in
ref. 12. Lets assume that the vortex and the charge move along the
imaginary time-dependent trajectories R{r), and X(r) respectively. In this
case the vortex and charge space-time distributions can be described by

After taking the time derivative of u(1) we find

The right hand side in this equation relates the time derivative to a summa-
tion over space derivatives. We can next rewrite the interaction term in the
effective action in the following way

Using this definition Eq. (72) can be rewritten as
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The solution kernel 0 for a point vortex at the origin satisfies the equation

from which we can get our final expression for the effective magnetic field

Up to now we have that the effective action in Eq. (66), the effective gauge
vector potential and its magnetic field interaction are nonlocal in time, due
to the nonlocality in time of the second term in Eq. (63). In the limit
(PE(P)(fiEty » 1, the second term in Eq. (63) is negligible, and therefore
we can write

Using Eq. (8) we can write this equation in terms of the intra-array
capacitance matrix

We note that the array is periodic and symmetric, so that all the commuting
matrix operators can be diagonalized using plane waves. These facts produce
important simplifications in the rest of the interaction kernels, giving the
results

Equation (81) is particularly significant, since it implies that, within this
approximation, the interactions among charges in array 2 do not depend
on the presence of array 1. This is a counter-intuitive result, because we
would expect that a virtual photon excited from an island in array 2 and
absorbed in another island in the same array would have contributions
from bounce interactions with array 1. What happens is that after adding
all the contributions from these bounces, the net result (within the



This result implies that, if we have a charge at X(T) and a vortex at R(r),
the vortex will feel an effective magnetic field produced by the charge of
magnitude — C intC^'(./?(T), X(T)). This situation is reminiscent of the vor-
tex-charge bound states extensively studied in the fractional quantum Hall
effect problem, and it may very well be that this system may serve as an
experimental prototype for those types of problems.

Our discussion here has concentrated on deriving and analyzing con-
venient partition function expressions that one can also use in quantum
Monte Carlo simulations. We have done some work in this direction, but
we must say that the problem is still highly non trivial because of the form
of the kernels in the effective action. However, we expect to further unravel
interesting physics for this problem in future.

V. CONCLUSIONS

In this paper we have introduced and presented results for a model of
two capacitively coupled quantum Josephson junction arrays. This is a dif-
ficult problem but one that promises to lead to interesting new physics. We
have first derived a semiclassical expression for an effective Hamiltonian,
that allowed us to study the change in the critical temperature for each
array. Vile used two types of variational actions that permitted the evalua-
tion of critical temperature shifts as a function of the inter-layer coupling
capacitance. The main qualitative result is that an increase in the interaction
capacitance increases phase coherence in the arrays. Next we considered the
interesting case where one array is quantum phase dominated and the
other Cooper pair charge dominated. Here we extended the one-array
work of Fazio et al.(12) to the capacitively coupled two-array problem. We
wrote an effective action in terms of four interacting imaginary time
Coulomb-like gases, and derived an effective Hamiltonian for the coupled
system. The effective Hamiltonian is dually symmetric between charge and
vorticity in form but with complicated kernels. In the simplified case where
one array has one vortex and the other one charge, we showed that their
interaction has a minimal gauge-like coupling. This interaction is, however,
nonlocal in the gauge field.

Finally, this type of system holds the promise to lead to a variety of
novel experimentally observable macroscopic quantum phenomena. In par-
ticular, the vortex-charge interaction discussed at the end of this paper

approximation leading to Eq. (78)) is a cancellation of the contributions
arising from array 1. Finally, we can write the effective magnetic field as
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deals with the interplay of quantum-classical effects, and may lead to
possible fractional statistics analogies to the fractional quantum Hall effect.
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